

SMITHSONIAN INSTITUTION
U. S. NATIONAL MUSEUM

# HYPORHAMPHUS PATRIS. A NEW SPECIES OF HEMIR.AMPIID FISH FROM SINALOA. MEXICO, WITII AN ANALISIS OF THE GENERIC CHARACTERS OF HYPO. RHAMPHES AND HEMIRAMPHUS 

By. Romikt R. Mhlaf

Tam: pancing of ont knowledge of the fresh-water dish fanna of nothwestern Maxie is evident from the novelties which Ralph $G$. Diller has collected in that region in recent years. In addition to the distinctive Dorosoma smithi Hnbls and Miller ( $19+1$ ) and a new Gila being described by me in Copeia, a new species of hallbeak of the trenus II yportomphus is now mate known.

About 60 yars ago Meek and Goss (1885, p. 221) wrote that the Smerioan halfbeaks referved to H miromphas ${ }^{1}$ were "in a condition of great confusion." Although a momber of papers dealing with the New World species have appeared since that time, the systematice status and particularly the distribution of the American forms are still far frome chear.

The diseovery of the new halfheak, deseribed helow, herings upt the ghention of the arenerie vinlidity of $H$ !/porhomphas and has prompted a critical study of brasiliensis and mifasciatus, the genot yes, respectively, of Hemiramphus Cuvior and Hyporhamphus Gill. 'This study has proved tobe most perductive for a momber of trenclant and aisily
 'The presence or abarene of seales on the upper jaw also was noted by Smith (193:3, p. 130). In preparing table 1 , in which the genotypes
 -peceimens of unifasciatus and gis specemens of trmestionsis in the robtertions of the U. S. Natiomal Masemm. These sperimens represent

[^0]material from the known American range of both species: unifasciatus, from Cape Cod to Urugnay in the Atlantic and from San Diego ${ }^{2}$ to Peru in the Pacific; and brasiliensis, from New York to Brazil.

Gill (1859, p. 131) based Myporhamphus principally on the tricuspid teeth (whence the name of the type species, $H$. tricuspidatus, a synonym of unifasciatus), but he later (1863) found, and Poey (1860, p. 298) previously had noted, that Hemiramphus likewise has tricuspid teeth. Poey's and Gill's observations on the nature of the teeth were correct, and hence I do not agree with Weed (1933, pp. 47, 57) and others who stated that the teeth are simple in Hemiramphus. As Smith (1933) has shown, and as I have also observed, the form and arrangement of the teeth vary with age and with different species. The jaws of a single individual may have unicuspid, bicuspid, and tricuspid teeth, and, in at least one American species, Hyporhamphus rosae (Jordan and Gilbert), only the largest individuals appear to have tricuspid teeth-hence the frequent statement that $H$. rosae has only unicuspid teeth.
The fundamental characters distinguishing the American species of Hemiramphus and Hyporhamphus, such as the presence or absence of scales on the upper jaw, the presence or absence of a bony rim along the side of the nasal fossa, and the arrangement of the sensory canal and pores on the preorbital (fig. 9), may be features that will separate world halfbeaks of this type. This is suggested to me by Smith (1933, pp. 130-131), who made a primary division in his key on the basis of a naked versus a scaled upper jaw, and by the very few Old World halfbeaks I have examined. In Euleptorhamphus Gill, however, the upper jaw is scaled as in Hyporhamphus, whereas the rim and the form of the nasal fossa and the sensory canal of the preorbital are essentially as in IIemiramphus.

The pattern of the scales on the upper jaw, the shape of the preorbital, and the arrangement of the teeth may be found to have generic or only specific value. The solution of these problems will necessitate a comprehensive review of the hal fbeaks of the world.

The form of the sensory canal and the pore on the preorbital are usually visible in Hyporhamphus, but the overlying scales and skin must be dissected from this bone in Hemiramphus before the canai and pores can be clearly seen. The two pores shown near the upper end of the posterior margin of the preopercle in Hyporhamphus (fig. 9, A) are apparently absent in Hemiramphus, but this character was checked only on a comparatively few individuals of each genus.

In table 1 I have abandoned the "key" characters-air bladder cellular or simple, sides of body vertical or convex, position and shape of

[^1]dorsal lin, and position of pelvics-used by many writers to separate Hemiramphus from Hyporhamphus. The nature of the air bladder is difficult to discern but maty be of considerable phylogenetic importance; the form of the sides of the body is an untrust worthy character because it is frequently rendered impractical ly preservation; the position and shape of the dorsal fin is not so distinctive a feature as is the diflerence in the basal lengeths of the dorsal and anal fins; and the position of the pelvic fins is useful largely for specific or subspecific separations.

Table 1.-Diagnostic differchces betucen Hyporhamphus unifasciatus and Hemiramphus brasiliensis ${ }^{1}$

| Character | unifasciatus | brasillensis |
| :---: | :---: | :---: |
| Driper jaw | Scalen] | Naked. |
| Markin of nasal fussa (sce fig. 9). | surmounted by a prominent bony rim along nosterolateral border. | Lacklig a bony rim in this positlon. |
| Sensory canal on preorbital (sec fig. 9 ). | Unbranched; with an exposed pore on slile and anotber pore at terminus of canal near adterior margin of nisal fossa. | Branched; with a pore at end of pos terior branch (which terminates in a bony ridqe near front of orbit) and a pore al end of anterior branch near anteroventral margin of nasul fossa. |
| 1) rssal fin. | Orer or nearly orer origin of anal, its bave and that of anal equal or sulsес!ual. | In advance of anal origin, its hase 1.5 to 2.1 times that of anal lin ( 1.3 or 1.4 in young). |
| Caudal $\mathrm{nn}^{\text {a }}$ | Molleratily frirked, the distance hetween caudal base and shortest camlal rays 7.4 in 9.0 In standard l-ngth. | Deeply forked, the distanee between caudal base and shortest candal rays 12.5 to $\mathbf{1 0 . 3}$ in standard length. |
| Shafe of magal fossa in adult. | Bromb, and litte depressed, its greatest inner diameter nure than onehalf that of orlit. | Narrow and kreatly depressed, its greatest diameter one-fourth to onethird that of orbit. |

[^2]The new specie= dacribed below is the first to be definitely recorded from fresh water in the New World. It appears to be restricted to a fluwitile habitat, for a number of collections of halfteaks along the west (0)ast of Mexico in the region where the new species was discoswred contain no species ielentical with it.

I name this distinctive fish putsix, erentive of pator (father). bectuse my. father, RaIph (i. Millem, colleeded the 1t types and only linown specimens.

## HYHORHAMHDLS PATBLS, new speck

I'Late: 11
T'ypes.-The holotype (U.S.N.M. No. 129956) is a mature adult (presumathly a female, see below), 118 mm . in stamdard lengh, and was collected on May 4, 1912, by Ralph G. Miller in Río del Fuerte, one-half mile above the (own of El Fuerte, which is about 20 miles bortheast of Sim Bhas. Sinoli, Mexico. The 13 paratypes (U.S.N.M.

No. 129957), 107 to 130 mm . long, were collected with the holotype. One fish in the lot, a specimen 113 mm . in standard length, is the only individual of the series that has distinetly larger pectoral and pelvic fins. On examination it was found to be a ripe male. One of the others, a specimen 109 mm . long with short pectorals and pelvics, was found to contain eggs in various stages of development, some of them apparently fully mature. The remainder are presumably all females.

Diagnosis.-A Hyporhamphus with pelvic fins about equidistant between caudal base and gill opening, 21 to 24 gill rakers on lower limb of first arch, with a relatively long mandible ( 3.6 to 4.2 in standard length), without scales on dorsal or anal fins, and without the fleshy tip of the mandible red.

Desoription.-Body rather slender, its depth 8.0 to 9.6 in standard length, little compressed, the sides rounded; width of body in depth 1.05 to 1.4 ; head 4.5 to 5.0 in standard length; mandible (measured from tip of upper jaw to end of bony tip) 3.6 to 4.2 in standard length and 0.7 to 0.9 in head length (broken in one specimen); snout 2.8 to 2.9 in head; orbit 4.0 to 4.3 in head, 1.35 to 1.45 in snomt and 1.6 .5 to 1.85 in postorbital; interorbital 3.8 to 4.1 in head and 1.5 .5 to 1.7 in postorbital; length of preorbital 1.5 to 1.65 in orbit; depth of preorbital 1.5 to 1.75 in orbit; width of nasal fossa 1.55 to 2.15 in orbit ; base of anal fin 1.01 to 1.08 in base of dorsal fin; pectoral short. 8.4 to 9.35 in standard length in females ( 7.9 in the male) and 1.75 to $1.9^{\circ}$; in head ( 1.65 in male) ; pelvic 2.7 to 3.0 in head in females ( 2.25 in male) ; mideaudal rays (measured from midbase of caudal fin to tip, of shortest middle ray or rays) 8.4 to 9.3 in standard length, 1.7 to 1.9 in head, and 2.1 to 2.4 times the length of the orbit.

The fin rays vary in number as follows: Dorsal 13 to 15, usually 14: anal 15 or 16 , usually 16 : pectorals $10-10,10-11$, or $11-11$, almost always $10-10$; pelvies always $6-6$. I depart from my usual method in counting the rays of the dorsal and anal fins and regard every element as a separate ray, hecause this procedure has been followed by virtually all students of this group of fishes. Without exception the first two rays of the dorsal fin are unbranched, and the first two rays of the anal fin are also simple except in two specimens in which the first three rays are mbranched.

The gill rakers on the lower limb of the first gill arch (comted on both sides) vary from 21 to 24 .

The lateral series scales (cominted from upper angle of gill opening to caudal base) number about 53 to 59 , usually 55 to 57 ; an accurate count is difficult to obtain because the scales are largely missing from the sides.

The pelvic fins lie about equidistant between the base of the caudal fin and the gill opening, varying between the pectoral base and the middle of the opercle. The dorsal fin varies in position from equi-
distant between candal base and pelvic insertions to much nearer pelvic insertions than caudal base.
The teeth of the holotype are unicuspid, bicuspid, and tricuspid and are arranged in about three to seven irrecular rows in the upper jaw and two to five rows in the lower jaw. Tricuspid teeth are present only posteriorly in each jaw and virtually all the anterior teeth (from ubout the middle of each jaw forward) are unicuspid. In the region where unicuspid and tricuspid tecth intergrade. occasional bicuspid teeth oceur. The tooth rows are eonspicuously broader medially on each side of the upper jaw than they are at either end, and teeth are


Figure: 9.-Sketch of head regions of Hyporhamphus and Hemiramphus to illustrate certain diagnostic differences (sec table 1): A, Hyporhamphus unifasciatus, 183 mm . in standard lentth, from Key Wcst, Fiorida (U.S.N.M. No. 345S9); B, Hemiramphus trasiliensis, 182 mm . Ieng, from Key West, Florida (U.S.N.M. No. 38684). Drawn by Mrs. A. M. Awl, U. S. National Muscum.
absent at the tips of both upper and lower jaws. In the lower jaw the rows of teeth are of nearly miform width but are somewhat broader close to the proximal end on each side and then become narrow gradually forward and abruptly behind this region. In the lareest paratype ( 130 mm . in standard length) there are more trienspid teeth than in the holotype ( 118 mm . long), which agrees with my observation in II. rosae that tricuspid teeth appear with increasinge size of the individual (this was aloo noted in other American Ihemiramphens ame Hyporhumphus). Otherwise the teeth of the paratypes have essentially the same form and arrangement as in the holotype.

The triangular upper jaw is sather bluntly pointed at the apex and broader at the base than it is long. When the month is closed most of the outer teeth of the lower jaw are exposed. The seales of the upper jas are invernlarly aranged, the tramserse rows mombering five or six across the base, then about four, whereas from about the middle to the tip of the jaw they are biserial-with a single scale on each side of
the slight median ridge. Although the scales cross this low ridge posteriorly they do not usually do so anteriorly.

No scales were observed at the tip of the upper jaw, but these may have dropped off. The sides of the head, including the region of the mandible below the jaws, are covered with deciduous scales.

The margins of the prolonged mandible or "beak" are nearly parallel throughout, diverging little mutil the posterior end is reached. The nasal flap is small.

The dorsal and anal fins are low, highest anteriorly, with rays 3 to 5 longest; these rays in the anal fin are almost three times as long as the last ray, whereas in the dorsal fin the anterior rays are only about twice as long as the last ray, which is slightly prolonged and falls some distance short of reaching the bases of the procurrent caudal rays. The asymmetrical caudal fin is rery weakly forked, less so than in any other American species I have seen except $I$. rosue. As in many halfbeaks, the lower caudal lobe is longer.

The air or swim bladder as noted in the single male is simple, without any cellular structure.

Coloration.-The general coloration was noted in the fidd by the collector. When taken from the water the body of the new species was intense blue and green varying in brilliance according to the reflection of light from the surface, the blue and green grading into each other. The fins or the belly are believed to have been yellow or orange. No bright color was seen anywhere on the beak. This observation is important, for most, if not all, of the American halfbeaks have the fleshy tip of the mandible red. According to Herre (1944, p. 9) the Philippine species of Hemiramphus (including Hyporhami)hus) have this tip red, green, or greenish white, depending upon the species. I therefore interpret the lack of red color on this structure in patris as a character of specific ralue.

The color of the preserved specimens (in alcohol) is mostly light silvery to pale brownish. The back, above the lateral band on each side, is marked with brownish punctulations, which are usually more concentrated on the posterior borders of the scales. Along the middle of the back are three narrow longitudinal rows of dark pigment. broader near the occiput and particularly over the caudal peduncle: the outer rows are more or less continuous past the base of the dorsul but the middle row is disrupted in this region into a series of U - or $V$-shaped markings between the bases of the rays. The base of the anal fin is marked similarly to that of the dorsal base, but the longitudinal rows of pigment are far less conspicuous. On each side of the body is a dark band, probably silvery in life, which is very narrow anteriorly and broadest between dorsal and anal fins. The upper surface of the anterior part of the head, including the upper jaw, and of the mandible is black; the lower surface of the mandible is finely
piombented with black chromatophores fading postoriorly so that both chin and throat are largely colorlese. The tips of the candal rays and those of the longe dorsal days are marked with fine black punctulations: the other fins are mostly pale. Along the underside of the candal peduncle are three rather irvegular longitudinal rows of dark pigment. The silvery peritonem is overlan by coppery brown and by fine. black punctulations.

Mabitat and asoriates.-Río del Fuerte, near El Fuerte, Sinalon, is a deep riber with samd and mud bottom and abrupt rocky banks. On May 4,1942 , when the types were collected, the current was fairly -wift, and hanls with a 2 - foot batg seine were made in water generally 1 to 5 feet deep but more than 6 feet in places. It noon the air was $37^{\circ} C^{\prime}$. and the watter 32 C . No vegetation was seen, and the shore wats sandy. with trees along the bank. Collecting wats confined largely to the batckaters. The point where the fish were seeured is fully 100 miles upstream from the Pacifie.

In the large collection mathe here, the following fishes, tentatively identifid, were al-w wind: A species of eyprinid fish of the gemms Cilla; two specimens of at catfish of the genns Iotalurus; ceprinorlont fishes of several gencra including Molliemision splemops; six mullets, - Ifonostomus monticola: a large number of the frestwater atherine Melaniris crystullimus: and two erohies. Araous (or C'homerphomus)
 confined to fresh water.

Ran!! - The new species was collected only in the Río del Fuerte. Ralph G. Miller :aw halfheake in the Rín Culiacán at Culanain, Sinatlas. Mexien, about 150 miles sonth of El Fuerte and about 40 miles inceream from the Pacifie. lut the iclentity of this species is manown.

Relationslips.-I! !porhamplus patris appeats to be the southern reprecmlatwo of $I /$. reser (Jomdan athd Gilbert) (1880). which is known from san Pedro. Calif., south to the tip of Baja California, then up the west side of the Gulf of California and sonthward alonge lhe mainland of Mexico to Gmaymas. Sonoma (Evermann and Jenkins. 1691. P. 13:5; perord eonfimed by examination of the live specimens from (Buymas in thr stanford Natmral History Mnsemm. No. 4:í). Rio del Finerte, the habitat of putris. is about 170 miles south of Gllaymas.

The two spece aceree in most measmement- and combts and in the following importat rharactors: (1) Posterion position of the pelvic fins: (2) gill rakers: 21 to 2.5 on the lower limb of the first will areh in my counts for rosme, 21 to 21 for patris: (3) long mandible, which :ppears to tre slighty longer in rosue, hut a sumes of comparable sizes would prohably eliminate this difteremer ; (f) no scales on the dorsal or anal fins: (5) dontition. The two specese differ as shown in the comparison presented in table 2 . Fome or all of these diflerences
may vanish when larger series of both species from more localities are available, but it seems best at this time to regard them as distinct species.

Table 2.-Comparison of Hyporhamphus patris and H. rosae

| Character | rosar | patris |
| :---: | :---: | :---: |
| Color of mandible. | Dark red | Black. |
| Fleshy tip of mandiblo.- | Red | Not red. |
| Scales in lateral series | 58-65. | 54-59. |
| Bouy interorbital into length of head. | 3.4-3.8 | 3.8-4.1. |
| Diameter of orbit into head length. | 3.4-4.0 | 4.0-4.3. |
| Size. | Smaller; largest specimen 107 mm . in standard length, usually much less than 100 mm . long. | Larger; largest specimen 130 mm . long and smallest 107 mm . |

The posterior position of the pelvic fins and the few gill rakers readily separate patris from Hyporhamphus unifasciatus (Ranzani), H. roberti (Valenciennes) (=hildebrandi Jordan and Evermann), H. snyderi Meek and Hildebrand, and H. gilli Meek and Hildebrand, the other species reported from Middle America (Meek and Hildebrand, 1923, pp. 236-241, pls. 16-17).

Acknowledgments.-Material of Hyporhamphus rosae was borrowed from the Stanford Natural History Museum, through the kindness of Miss Margaret Storey, and from the Chicago Natural History Museum, through the courtesy of K. P. Schmidt and Mrs. Marion Grey. I am grateful for this cooperation.

## LITERATURE CITED


1sh. Le regne animal distribue dapris sum uganisation, jume servir do base


 with deseriptions of new species. Proce U. S. Nat. Mus., vol. 14, pro 121-16.5. 2 pls.
Gifl TuFabole Nichulas.
 Thamphus Cur. Pruc. Acarl. Nat. Sci. Paladelphita, 185!), p. 131.
1stas. Ninte out the genera of Hemirhamphinar. Proc. Acat. Nat. Sci. Philat

Hi.Rief, Ar.mert W. C. 'T.
1:44. A revials of the halforaks or Hemiramphatae of the Philiphines and alljacent waters. Stafmed Unis, Puhl, buiv, ser., bioh, sti., vol. 9,

Hohbs, C'ubr, Lbivift, ahd Madfr, Romekt Rush.



 from the calas uf ('illifmiat. Prow. U. S. Nat. Mus., vol, 3, Ill. 233.5-236.

 Achd. Natt. Sci. Philadelphit, 18S4, [p]. $221-2210$.




 sмmif. I. L. H.









[^0]:     by Cuviar (1817. 1. 180) in /Irmi liumphun.

[^1]:    ${ }^{2}$ In material from San Diego, Calif. (Stanford Nat. Hist. Mus. No. 9912) I found one specimen of this species, which, to my knowledge, representa a northward exteusion of known range on the Pacific coast.

[^2]:    
     No. 3waii) of $I$. brasiliensis.

